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Karhunen-Loève local characterization of spatiotemporal chaos in a reaction-diffusion system
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By computing the Karhunen-Loe`ve decomposition~KLD ! correlation lengthjKLD of a reaction-diffusion
system in the extensive chaos regime, we show that it is a sensitive measure of spatial dynamical inhomoge-
neities. It reveals substantial spatial nonuniformity of the dynamics at the boundaries and can also detect slow
spatial variations in system parameters. The intensive lengthjKLD can be easily computed from small local
subsystems and is found to have a similar parametric dependence as the two-point correlation length computed
over the full system size.

PACS number~s!: 05.45.Jn, 05.70.Ln, 05.45.Pq
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A poorly understood issue in nonequilibrium physics
the space-time characterization of spatiotemporal ch
@1,2#. These states exhibit a lack of correlation in both sp
and time and are found in many physical systems includ
reacting and diffusing chemical flows@3#, convective trans-
port of heat @4#, and charge transport in semiconducto
@5–7#. These states have been characterized using two-p
correlation functions@8# and dimension correlation length
@9#, though both are global measures of the dynamics
assume uniform homogeneous chaos. However, averag
spatiotemporal chaos in experiment@10–12# and simulation
@13# have demonstrated that the dynamics can be stro
effected by the boundaries. Further, system parameters
often vary spatially~an example being the concentration o
chemical species in a spatially-extended reaction-diffus
system!, so a means to quantify parametric variations in
system can be important in making comparison with exp
ment. Recently, the Karhunen-Loe`ve decomposition~KLD !
correlation length@14# was used to characterize extensi
chaos locally in small subsystems of the larger dynami
based on the extensive growth of the KLD dimension@15#.
Since the KLD correlation length is defined in a subsyste
it allows a dynamical measure of nonuniformities in spa
Further, this length scale was shown to be an indepen
quantity, which behaves similarly to the dimension corre
tion length @14# but has a different parametric dependen
than the two-point correlation lengthj2 in coupled map lat-
tices @14# and convection data@16#. These results sugges
that the KLD correlation length is a useful independe
length scale in spatiotemporal chaotic systems.

In this paper, we present an application of the KLD co
relation length to a reaction-diffusion model, which d
scribes charge transport in a semiconductor with bista
current-voltage characteristics@17#. This model has an ad
vantage over the Kuramoto-Sivashinsky equation on wh
the KLD correlation length was originally computed in th
there are tunable parameters in the partial differential eq
tions making it a more general model of spatiotempo
chaos. For a sufficiently large system size, the model exh
long transients, which are extensively chaotic@6#, i.e., the
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number of positive Lyapunov exponents grows in proport
to the system volume@7#. If one defines the KLD dimension
DKLD as the number of KLD eigenmodes needed to appro
mate the space-time data with a certain accuracy, this n
ber also scales extensively with subsystem volume. A K
local correlation lengthjKLD is then derived from the rate o
growth of the KLD dimension with subsystem volumeV.
This KLD correlation length is used to quantify dynamic
inhomogeneity near boundaries. We demonstrate the e
tence of a long-range spatial nonuniformity in the KLD co
relation length similar to the average patterns of spatiote
poral chaos@13#. Further, we vary a system parameter in t
model and confirm that the KLD correlation length can d
tect parametric changes. Finally, we demonstrate that
KLD correlation length computed on small subsystems
proportional to the two-point correlation length comput
over the entire system volume.

The Karhunen-Loe`ve decomposition, also called th
method of empirical orthogonal functions or proper orthog
nal decomposition, is a classical statistical method to rep
sent complex space-time dataU(t i ,xj ) by a minimum num-
ber of space and time eigenmodes@15#. This decomposition
proceeds by organizing the discretized data into a space-
matrix,

Ai j 5U~ t i ,xj !2^U~ t i ,xj !&, ~1!

where ^U(t i ,xj )& is the space-time-average of the fie
U(t i ,xj ). The space-time matrix is of dimensionsT3X
whereT is the number of observation timest i , andX is the
number of observation sitesxj within the subsystem. A sin-
gular value decomposition of this matrix provides an optim
2-norm variance decomposition of the space-time matrixA
in the sense that the expansion of

Ai j '(
k51

p

ak~ t i !sk
2Fk~xj ! ~2!

in terms of spatial eigenmodesFk(xj ) and normalized mode
amplitudesak(t i) has a minimum squared error for a fixe
number of expansion termsp @15#. The weight of the differ-
ent expansion terms is given by their variancessk

2 , which
correspond to the eigenvalues of the positive semidefi
1382 ©2000 The American Physical Society
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covariance matrixATA, ordered in decreasing size,s1
2>s2

2

>•••>sX
2 , and Fk(xj ) are the eigenvectors ofATA. The

KLD dimension@18# of the matrixAi j

DKLD5maxH p:
(k51

p sk
2

(k51
X sk

2
< f J ~3!

represents the number of linear eigenmodes needed to
proximate some fraction 0, f ,1 of the total variance of the
data@14,18,19#.

The relation of the KLD decomposition to Fourier anal
sis depends on the symmetries of the matrixA @15#. If the
data is homogeneous, i.e., periodic in time or translation
invariant in space, then the autocorrelation matrixATA be-
comes translationally invariant and then the KLD modes
Fourier modes. In most physical situations, dynamics w
not be homogeneous or space-translationally invariant du
the boundaries and varying system parameters. Therefor
spatiotemporally chaotic systems the KLD modes m
likely will not trivially correspond to Fourier modes of th
data.

The KLD local correlation length is based on the comp
tation of DKLD(xj) for concentric subsystems of volumeV
centered at the pointxj in space. The dimensionDKLD(xj)
typically depends on the pointxj and so provides a measu
of spatial dynamical inhomogeneity. For extensive chao
systems the KLD dimensionDKLD(xj) will increase linearly
with subsystem volumeV with a slopedKLD . This indicates
that the KLD dimension densitydKLD5DKLD /V is a more
useful measure, as it is an intensive property of the s
system. To derive a characteristic length scale, the KLD c
relation lengthjKLD is defined to bedKLD

21/d where d is the
spatial dimensionality of the data. The advantage of the K
correlation length over dimension correlation length@20# or
two-point correlation length@8# is that it is computed directly
from data in small localized spatial subsystems of lar
space-time data sets. This locality has allowed the detec
of smooth spatial dynamical nonuniformities of a system
rameter of a coupled map lattice@14# and of experimenta
spatial inhomogeneities in convection data@16#. Further, in
the study of an Ising-like phase-transition, the KLD corre
tion lengthjKLD was shown@14# to have a different critical
parametric dependence than the commonly computed
point correlation length, indicating at least for some ca
that jKLD is an independent length scale of spatiotempo
chaos. It is not understood whether these properties hold
systems described by partial differential equations w
boundaries and tunable parameters where contin
smoothes out inhomogeneities.

To study the behavior of the KLD correlation length in
physically relevant partial differential equation model, w
consider the spatially extended reaction-diffusion system
activator-inhibitor type@17#

]u~x,t !

]t
5a~ j 02~u2a!!1D

]2u

]x2
~4!

]a~x,t !

]t
5

u2a

~u2a!211
2Ta1

]2a

]x2
, ~5!
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which models charge transport in layered semiconduc
structures with bistable current-voltage characteristics, as
served experimentally, e.g., inpin diodes@21#, pnpn-diodes
@22#, or heterostructure hot electron diodes@23#. Hereu(x,t)
is the normalized voltage across the device anda(x,t) is the
activator variable representing a normalized interface cha
density. The parameterT controls the size of the bistability
regime,a is the ratio of time scales betweenu anda, D is the
squared ratio of the effective length scales ofu(x,t) and
a(x,t), and j 0 is the driving current that represents an eas
accessible control parameter. We restrict ourselves to
spatial dimensionx in the layer plane perpendicular to th
current flow, and use Neumann boundary conditions

]a~x,t !

]x U
x50,L

5
]u~x,t !

]t U
x50,L

50, ~6!

whereL is the system size. In our dimensionless units,
current densityj (x,t)5u(x,t)2a(x,t) is the physical quan-
tity of interest. Equation~4! describes the dielectric relax
ation of the voltage, while Eq.~5! is a nonlinear charge con
tinuity equation.

The bistability gives rise to current filaments where t
cross section of the current flow exhibits a region of hig
current density embedded within a low-conductivity phase
has been shown that the system exhibits both a Turing a
Hopf bifurcation, and near the codimension-two Turin
Hopf point a subharmonic mixed mode corresponding
spatiotemporal spiking of the current density with very lo
chaotic transients@6,24#. The mean transient times increa
exponentially with the system size, and may be so long t
the asymptotic periodic state is not reached during reali
observation times. A Karhunen-Loe`ve decomposition of the
transient spatiotemporally chaotic pattern has shown that
variancesk

2 decreases very slowly with increasing mode
dex k @7#.

We consider a system in a range of sizesL51000 toL
52750 and parameter values corresponding to transient
tiotemporal chaos. The model is integrated using a seco
order midpoint Runge-Kutta integrator with a time stepDt
50.1 and a second-order spatial discretization with 0
<Dx<0.5. We record the spatial fieldj (x,t)2^ j (x,t)& at
each mesh point in a concentric subsystem of lengthS at
intervals of 5 time units~corresponding to 50 time steps!. To
eliminate the influence of initial conditions, the first 250 tim
units are discarded. The resulting KLD dimensionDKLD is
shown as a function of subsystem sizeS in Fig. 1. For most
cases in the following, the KLD dimensionDKLD is com-
puted with a relative total variance corresponding tof
599.999%. This results in keeping roughly 1/5 of the nu
ber of eigenmodes of the covariance matrixATA. The KLD
correlation lengthjKLD5(DKLD /S)21 is computed from the
linear growth of the KLD dimensionDKLD with subsystem
size S, and at least five subsystem sizesS are chosen to
extract the slopedKLD . We have checked that it agrees
good accuracy with the slope determined by varying thetotal
system sizeL. When the total system is made larger, t
change inDKLD is equivalent to adding more homogeneo
center subsystems. The qualitative behavior ofjKLD remains
similar for fractionsf between 85% to 99.9999%. For frac
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1384 PRE 61MEIXNER, ZOLDI, BOSE, AND SCHÖLL
tions f ,85% the scaling ofDKLD becomes coarse due to th
small number of modes required to satisfy smaller fractio
of data variance.

First, we study a system of sizeL51000 to perform a
high-resolution (Dx50.25) investigation of the dynamica
inhomogeneity induced by the boundaries. This is motiva
by recent calculations of mean patterns of spatiotempor
chaotic systems exhibiting complicated patterns that pe
over a large distance into the interior of the system@11,12#.
In our reaction-diffusion model, for the parameter regim
considered, the two-point correlation lengthj2, which is
computed from the inverse full width at half maximum of th
main peak of the power spectrumP(k);exp@2(4 ln 2)j2

2(k
2k0)

2# with respect to the wave vectork, is approximately
4.0 and so the system length is approximately equa
250j2. We compute various KLD correlation lengthsjKLD
centered at a distancex from the boundary, with 0,x
,50j2. Figure 2 demonstrates that the KLD correlati
length jKLD oscillates and decays to its bulk value of a
proximately jKLD'2 over the range ofx from 0 to 50j2
'200. The oscillations indicate that the system of sizeL
51000 is still relatively far from the limit of homogeneou
extensive chaos. These oscillations are fingerprints of in
ference effects induced by the Neumann system bounda

A second problem often encountered in experiment is
system parameters can vary nonuniformly in space or v

FIG. 1. KLD dimensionDKLD versus subsystem sizeS for dif-
ferent fractions f of the reconstruction (L52200, Dx50.5, T
54000 time snap shots!. Numerical parameters are:T50.05, j 0

51.218, D58, a50.02. All quantities, including length and
time, are dimensionless.

FIG. 2. ~a! Local KLD correlation lengthjKLD versus positionx
measured from the boundary of the system.~b! shows the same dat
close to the boundary with a higher spatial resolution. Subsyst
of sizeS53,4,5,6,7,8, and a reconstruction off 599.999% are used
~system sizeL51000, Dx50.25, T52000 time snap shots, pa
rameters as in Fig. 1!.
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over time. To evaluate whether the KLD correlation leng
can detect small spatial parameter changes in partial dif
ential equations we vary the parameterT spatially in theL
51000 system. Physically this could be achieved, e.g.,
modulating the layer thickness of the semiconductor str
ture and thus the tunneling rate. We wish to test whether
more strongly coupled spatiotemporally chaotic system
KLD correlation length is able to detect changes in para
eters, similar to what was shown for weakly coupled syste
of iterated chaotic maps@14#. The parameterT is modulated
periodically according toT50.0510.0025 sin(2px/1000)
~this corresponds to a 5% change in a system parame!.
Figure 3 shows that the KLD correlation lengthjKLD has a
sinusoidal form and is clearly able to predict the parame
dependence of the variation inT. The noise in the data could
be reduced by performing additional averages in time. T
local nature of KLD allows a determination of dynamic
inhomogeneity.

Next, we consider whether the KLD correlation leng
has a different parametric dependence than the more c
monly used two-point correlation length. For the case o
lattice of weakly coupled one-dimensional iterated maps
was shown by Zoldi and Greenside@14# that near a nonequi
librium Ising-like phase transition the KLD correlatio
lengthjKLD varies in a similar way as the fractal dimensio
correlation lengthjd5(D/V)21/d, whereD is the fractal di-
mension, but differently than the two-point correlatio
length. Here, we consider a system of lengthL52750 and
vary T from 0.048 to 0.052. We have been unable to exte
this range ofT because the dynamics qualitatively chang
outside this window ofT and becomes non-chaotic. Note th
the two-point correlation lengthj2 is computed over theen-
tire system sizeL52750. Figure 4 demonstrates that with
the errors in calculating the KLD correlation lengthsjKLD
and the two-point correlation lengthsj2 both are propor-
tional. Therefore, we suggest that in the reaction-diffus
model in this range ofT the two-point and the KLD correla
tion lengths are related. Given the relationship between
KLD correlation length and the fractal-dimension correlati
length @14#, we expect that the fractal-dimension correlati

s

FIG. 3. Local KLD correlation lengthjKLD versus position for a
nonuniform modulation of the parameterT50.0510.0025
•sin(2px/1000) over a system sizeL51000. Subsystems of siz
S515,20,25,30, and a reconstruction off 599.999% are used to
compute the KLD correlation length (Dx50.5, T54000 time snap
shots sampled every 5 time units, parameters as in Fig. 1!. The
continuous line is a guide to the eye.
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length is also proportional to the two-point correlatio
length. This is similar to the proportionality relationship b
tween the dimension correlation length and the two-po
correlation length found for the magnitude of the order p

FIG. 4. Plot of the KLD correlation lengthjKLD vs the two-point
correlation lengthj2 corresponding to the range ofT from 0.048 to
0.052. The system size isL52750. To compute the KLD correla
tion lengthjKLD , T54000 snap shots separated by 5 time units
used in subsystems of sizeS545, 60, 75, and 90 with a reconstruc
tion of f 599.999% (Dx50.5). In computing the two-point corre
lation length, we use the entire system size ofL52750 and the
power spectra are averaged over 2000 realizations. Error estim
for jKLD and j2 are Dj250.12 andDjKLD50.015. The line is a
guide to the eye and is of the formj25219.515.9jKLD . Param-
eters as in Fig. 1.
rs
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rameter of the complex Ginzburg Landau equation@20#.
However, we cannot exclude that near parameter va
where the dynamics changes critically and abruptly, the K
correlation length may exhibit different behavior. Moreove
since the KLD correlation length is much more readily a
cessible from small data sets than the other two types
correlation lengths, it appears to be more suitable for qu
titative investigations.

In conclusion, we have utilized the KLD correlatio
length to characterize dynamical inhomogeneities of s
tiotemporal chaos in a system of partial differential equatio
of reaction-diffusion type. We have confirmed that the KL
correlation length is able to detect dynamical inhomoge
ities in both space and time due to boundaries or variation
a system parameter. The KLD correlation lengthjKLD can be
computed on small localized subsystems allowing quan
cation of spatial dynamical nonuniformities. Further, t
KLD correlation length is based only on spatiotemporal da
and therefore can be easily applied to both experiment
computer simulation. Since spatiotemporal chaotic spiking
the current densityj (x,t) has been observed experimental
e.g., in Sipnpndiodes@22#, an analysis of such experiment
data would provide potentially very interesting insights in
inhomogeneities in the physical system.

S.M.Z received funding from the Center of Nonline
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