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Karhunen-Loeve local characterization of spatiotemporal chaos in a reaction-diffusion system
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By computing the Karhunen-Loe decompositio(KLD) correlation lengthé,, p of a reaction-diffusion
system in the extensive chaos regime, we show that it is a sensitive measure of spatial dynamical inhomoge-
neities. It reveals substantial spatial nonuniformity of the dynamics at the boundaries and can also detect slow
spatial variations in system parameters. The intensive leégth can be easily computed from small local
subsystems and is found to have a similar parametric dependence as the two-point correlation length computed
over the full system size.

PACS numbd(s): 05.45.Jn, 05.70.Ln, 05.45.Pq

A poorly understood issue in nonequilibrium physics isnumber of positive Lyapunov exponents grows in proportion
the space-time characterization of spatiotemporal chao® the system volumg7]. If one defines the KLD dimension
[1,2]. These states exhibit a lack of correlation in both spac® p as the number of KLD eigenmodes needed to approxi-
and time and are found in many physical systems includingnate the space-time data with a certain accuracy, this num-
reacting and diffusing chemical flowW8], convective trans- ber also scales extensively with subsystem volume. A KLD
port of heat[4], and charge transport in semiconductorslocal correlation lengtfgy,  is then derived from the rate of
[5—7]. These states have been characterized using two-poigrowth of the KLD dimension with subsystem volunve
correlation functiong8] and dimension correlation lengths This KLD correlation length is used to quantify dynamical
[9], though both are global measures of the dynamics thanhomogeneity near boundaries. We demonstrate the exis-
assume uniform homogeneous chaos. However, averages tehce of a long-range spatial nonuniformity in the KLD cor-
spatiotemporal chaos in experimgiiD—12 and simulation relation length similar to the average patterns of spatiotem-
[13] have demonstrated that the dynamics can be stronglporal chaog13]. Further, we vary a system parameter in the
effected by the boundaries. Further, system parameters camodel and confirm that the KLD correlation length can de-
often vary spatiallfan example being the concentration of atect parametric changes. Finally, we demonstrate that the
chemical species in a spatially-extended reaction-diffusiorLD correlation length computed on small subsystems is
system, so a means to quantify parametric variations in theproportional to the two-point correlation length computed
system can be important in making comparison with experiover the entire system volume.
ment. Recently, the Karhunen-Lwe decompositio(KLD) The Karhunen-Loge decomposition, also called the
correlation length[14] was used to characterize extensive method of empirical orthogonal functions or proper orthogo-
chaoslocally in small subsystems of the larger dynamicsnal decomposition, is a classical statistical method to repre-
based on the extensive growth of the KLD dimensf@b].  sent complex space-time datt; ,x;) by a minimum num-
Since the KLD correlation length is defined in a subsystemper of space and time eigenmodé$|. This decomposition
it allows a dynamical measure of nonuniformities in spaceproceeds by organizing the discretized data into a space-time
Further, this length scale was shown to be an independemeatrix,
guantity, which behaves similarly to the dimension correla-
tion length[14] but has a different parametric dependence Aij=U (LX) = (U(t %), 1)
than the two-point correlation len in coupled map lat- ) . .
tices [14] andpconvection dat@lG]gg}I;hese rgsults sSggest where (U(t;,x))) is the space-time-average of the field
that the KLD correlation length is a useful independentY(li-Xj). The space-time matrix is of dimensiofsx X
length scale in spatiotemporal chaotic systems. whereT is the numb_er of_obse(va_ltlon timeés andX is th(_a

In this paper, we present an application of the KLD Cor_number of observatlor) _S|te§ W|Fh|n thg subsystem. A sin-
relation length to a reaction-diffusion model, which de- 9ular value.decomposmon O.f.thIS matrix prowdgs an opt|mal
scribes charge transport in a semiconductor with bistabl@0rm variance decomposition of the space-time marix
current-voltage characteristi§&7]. This model has an ad- " the sense that the expansion of

vantage over the Kuramoto-Sivashinsky equation on which D
the KLD correlation length was originally computed in that A~ au(t) 2D (X 2
there are tunable parameters in the partial differential equa- . kzl K1) o) @

tions making it a more general model of spatiotemporal
chaos. For a sufficiently large system size, the model exhibitg terms of spatial eigenmodds,(x;) and normalized mode
long transients, which are extensively chadtd, i.e., the amplitudesa,(t;) has a minimum squared error for a fixed
number of expansion terngs[15]. The weight of the differ-
ent expansion terms is given by their variann:is which
*Electronic address: schoell@physik.tu-berlin.de correspond to the eigenvalues of the positive semidefinite
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covariance matriATA, ordered in decreasing Sizeizgg which models charge transport in layered semiconductor

=>...=¢%, and ®,(x;) are the eigenvectors #ATA. The Structures with bistable current-voltage characteristics, as ob-

=

KLD dimension[18] of the matrixA;; served experimentally, e.g., pin diodes[21], pnpridiodes
[22], or heterostructure hot electron diod@8]. Hereu(x,t)
spP 105 is the normalized voltage across the device a(xit) is the
Dyp=max p: —~——, \f] (3)  activator variable representing a normalized interface charge
k=10k density. The parametéf controls the size of the bistability

regime,« is the ratio of time scales betwearanda, D is the
represents the number of linear eigenmodes needed to @Bquared ratio of the effective length scalesugk,t) and
proximate some fraction-©f<1 of the total variance of the 5(x t), andj, is the driving current that represents an easily
data[14,18,19. N _ accessible control parameter. We restrict ourselves to one
The relation of the KLD decomposition to Fourier analy- spatial dimensiorx in the layer plane perpendicular to the

sis depends on the symmetries of the ma&ix15]. If the  cuyrrent flow, and use Neumann boundary conditions
data is homogeneous, i.e., periodic in time or translationally

invariant in space, then the autocorrelation ma&iXA be-
comes translationally invariant and then the KLD modes are
Fourier modes. In most physical situations, dynamics will X
not be homogeneous or space-translationally invariant due to

the boundaries and varying system parameters. Therefore, {ghereL is the system size. In our dimensionless units, the
spatiotemporally chaotic systems the KLD modes mostyrrent densityj (x,t)=u(x,t) —a(x,t) is the physical quan-
likely will not trivially correspond to Fourier modes of the tity of interest. Equation(4) describes the dielectric relax-

da(x,t) _du(x,t)

ot

=0, (6)

x=0,L

x=0,L

data. ) ) ation of the voltage, while Ed5) is a nonlinear charge con-
The KLD local correlation length is based on the compu-tinuity equation.
tation of Dy p(X;) for concentric subsystems of volune The bistability gives rise to current filaments where the

centered at the point; in space. The dimensioDy, (X))  cross section of the current flow exhibits a region of high-
typically depends on the point and so provides a measure current density embedded within a low-conductivity phase. It
of spatial dynamical inhomogeneity. For extensive chaotithas been shown that the system exhibits both a Turing and a
systems the KLD dimensioD p(X;) will increase linearly  Hopf bifurcation, and near the codimension-two Turing-
with subsystem volum¥ with a slopedy p . This indicates  Hopf point a subharmonic mixed mode corresponding to
that the KLD dimension densityy p=Dg.p/V is @ more  spatiotemporal spiking of the current density with very long
useful measure, as it is an intensive property of the subchaotic transient§6,24]. The mean transient times increase
system. To derive a characteristic length scale, the KLD corexponentially with the system size, and may be so long that
relation lengthéy p is defined to bes, i whered is the  the asymptotic periodic state is not reached during realistic
spatial dimensionality of the data. The advantage of the KLDobservation times. A Karhunen-Lee decomposition of the
correlation length over dimension correlation lenf@0] or  transient spatiotemporally chaotic pattern has shown that the
two-point correlation lengtf8] is that it is computed directly variances? decreases very slowly with increasing mode in-
from data in small localized spatial subsystems of largedexk [7].
space-time data sets. This locality has allowed the detection We consider a system in a range of sites 1000 toL
of smooth spatial dynamical nonuniformities of a system pa=2750 and parameter values corresponding to transient spa-
rameter of a coupled map latti¢é4] and of experimental tiotemporal chaos. The model is integrated using a second-
spatial inhomogeneities in convection dai®]. Further, in  order midpoint Runge-Kutta integrator with a time st&p
the study of an Ising-like phase-transition, the KLD correla-=0.1 and a second-order spatial discretization with 0.25
tion length¢y p was showr{14] to have a different critical <Ax=<0.5. We record the spatial fielf{x,t)—(j(x,t)) at
parametric dependence than the commonly computed tw@sach mesh point in a concentric subsystem of lertt
point correlation length, indicating at least for some casesntervals of 5 time unit¢corresponding to 50 time stepdo
that £k p is an independent length scale of spatiotemporakliminate the influence of initial conditions, the first 250 time
chaos. It is not understood whether these properties hold fQinits are discarded. The resulting KLD dimensibR,p is
systems described by partial differential equations withshown as a function of subsystem s&é Fig. 1. For most
boundaries and tunable parameters where continuit¢gses in the following, the KLD dimensioDy, p is com-
smoothes out inhomogeneities. puted with a relative total variance corresponding fto

To Study the behaVior Of the KLD COI’relation Iength in a =09.999%;. Th|s resultS in keeping rough|y 1/5 of the num-
phySICally relevant partia| diffel’entia| equation m0de|, we ber of eigenmodes of the covariance mam-kb\ The KLD
consider the spatially extended reaction-diffusion system ofqyrelation lengthéy o= (Dy.p /S) ~t is computed from the

activator-inhibitor type 17] linear growth of the KLD dimensiol, , with subsystem
size S, and at least five subsystem siz8sare chosen to
Ju(x,t) . J°u extract the slopeds, p. We have checked that it agrees to
st~ @lo=(u=a)+Dh a2 ) good accuracy with the slope determined by varyingttital
system sizel.. When the total system is made larger, the
sa(x.t) u—a a change inDg, p is equivalent _to gdding more homogepeous
— = —Ta+— (5)  center subsystems. The qualitative behaviog,gf remains

a (u—a)’+1 ax?’ similar for fractionsf between 85% to 99.9999%. For frac-
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FIG. 1. KLD dimensionDy, p versus subsystem siZfor dif- nonuniform modulation of the parametef/=0.05+0.0025
ferent fractionsf of the reconstruction (=2200, Ax=0.5, T -8in(2mx/1000) over a system sizZe=1000. Subsystems of size
=4000 time snap shotsNumerical parameters ar@d=0.05, j, S=15,20,25,30, and a reconstruction fof 99.999% are used to
=1.218, D=8, a«=0.02. All quantities, including length and compute the KLD correlation lengtiAk= 0.5, T=4000 time snap
time, are dimensionless. shots sampled every 5 time units, parameters as in BigThe

continuous line is a guide to the eye.
tions f <85% the scaling oD, , becomes coarse due to the

small number of modes required to satisfy smaller fractlonsover time. To evaluate whether the KLD correlation length
of data variance.

First, we study a system of size=1000 to perform a can detect small spatial parameter changes in partial differ-

high-resolution Ax=0.25) investigation of the dynamical ential equations we vary the paramet@spatially in thel

inhomogeneity induced by the boundaries. This is motivated 1000 §ystem. Physicglly this could be aphieved, e.g., by
odulating the layer thickness of the semiconductor struc-

by recent calculations of mean patterns of spatiotemporall , . ;
chaotic systems exhibiting complicated patterns that persidtre and thus the tunneling rate. We wish to test whether in a
over a large distance into the interior of the sysferh,12. ~ More strongly coupled spatiotemporally chaotic system the

In our reaction-diffusion model, for the parameter regimeKLD correlation length is able to detect changes in param-
considered, the tWO_point correlation |eng§a’ which is eters, similar to what was shown for Weakly COUpled SyStemS
computed from the inverse full width at half maximum of the of iterated chaotic mapgd4]. The parametef is modulated
main peak of the power spectruﬁ(k)~exq—(4|n 2)5%(k periodically according to7=0.05+0.0025 sin(er/lOOO)
—kg)?] with respect to the wave vectdt is approximately (this corresponds to a 5% change in a system parameter
4.0 and so the system length is approximately equal td-igure 3 shows that the KLD correlation lengfh p has a
250¢,. We compute various KLD correlation lengtlfg,; ~ sinusoidal form and is clearly able to predict the parametric
centered at a distance from the boundary, with &x  dependence of the variation #h The noise in the data could
<50¢,. Figure 2 demonstrates that the KLD correlationbe reduced by performing additional averages in time. The
length &x p oscillates and decays to its bulk value of ap-local nature of KLD allows a determination of dynamical
proximately & p~2 over the range ok from 0 to 5¢, inhomogeneity.
~200. The oscillations indicate that the system of dize Next, we consider whether the KLD correlation length
=1000 is still relatively far from the limit of homogeneous has a different parametric dependence than the more com-
extensive chaos. These oscillations are fingerprints of intemonly used two-point correlation length. For the case of a
ference effects induced by the Neumann system boundarielattice of weakly coupled one-dimensional iterated maps it
A second problem often encountered in experiment is thatvas shown by Zoldi and Greensiff&4] that near a nonequi-
system parameters can vary nonuniformly in space or varlibrium Ising-like phase transition the KLD correlation
length &k p varies in a similar way as the fractal dimension

22 ' T ' ' correlation lengthé ;= (D/V) ~ Y4, whereD is the fractal di-
a0k | mension, but differently than the two-point correlation
ep o o o length. Here, we consider a system of lengts 2750 and
200Fs & PP B | % | vary 7 from 0.048 to 0.052. We have been unable to extend
.' -~ this range of7 because the dynamics qualitatively changes
20k | outside this window off and becomes non-chaotic. Note that
L the two-point correlation length, is computed over then-
178 700 200 0 10 20 tire system size.=2750. Figure 4 demonstrates that within
@ X ) X the errors in calculating the KLD correlation lengthig p

FIG. 2. (a) Local KLD correlation lengttty, o versus positiox ~ and the two-point correlation length& both are propor-

measured from the boundary of the systém shows the same data tional. Therefore, we suggest that in the reaction-diffusion
close to the boundary with a higher spatial resolution. Subsystem@10del in this range of the two-point and the KLD correla-

of sizeS=3,4,5,6,7,8, and a reconstructionfef 99.999% are used tion lengths are related. Given the relationship between the
(system sizeL=1000, Ax=0.25, T=2000 time snap shots, pa- KLD correlation length and the fractal-dimension correlation

rameters as in Fig.)1 length[14], we expect that the fractal-dimension correlation
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FIG. 4. Plot of the KLD correlation lengtéy, p vs the two-point
correlation lengthé, corresponding to the range @ffrom 0.048 to
0.052. The system size Is=2750. To compute the KLD correla-
tion lengthéy o, T=4000 snap shots separated by 5 time units ar
used in subsystems of si&=45, 60, 75, and 90 with a reconstruc-
tion of f=99.999% (@Ax=0.5). In computing the two-point corre-
lation length, we use the entire system sizeLef2750 and the

power spectra are averaged over 2000 realizations. Error estimat

for éxp and é, are A¢,=0.12 andA &y p=0.015. The line is a
guide to the eye and is of the for§i=—19.5+5.9%y,p . Param-
eters as in Fig. 1.

length is also proportional to the two-point correlation
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rameter of the complex Ginzburg Landau equat(@®].
However, we cannot exclude that near parameter values
where the dynamics changes critically and abruptly, the KLD
correlation length may exhibit different behavior. Moreover,
since the KLD correlation length is much more readily ac-
cessible from small data sets than the other two types of
correlation lengths, it appears to be more suitable for quan-
titative investigations.

In conclusion, we have utilized the KLD correlation
length to characterize dynamical inhomogeneities of spa-
tiotemporal chaos in a system of partial differential equations
of reaction-diffusion type. We have confirmed that the KLD
correlation length is able to detect dynamical inhomogene-
ities in both space and time due to boundaries or variations in
a system parameter. The KLD correlation lengthy can be
computed on small localized subsystems allowing quantifi-
cation of spatial dynamical nonuniformities. Further, the
KLD correlation length is based only on spatiotemporal data,
and therefore can be easily applied to both experiment and
gomputer simulation. Since spatiotemporal chaotic spiking of
the current density(x,t) has been observed experimentally,
e.g., in Sipnpndiodes[22], an analysis of such experimental
data would provide potentially very interesting insights into
inhomogeneities in the physical system.
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